Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Int J Mol Sci ; 21(9)2020 Apr 30.
Article in English | MEDLINE | ID: covidwho-1934078

ABSTRACT

Severe acute respiratory syndrome-associated coronavirus (SARS-CoV) initiates the cytokine/chemokine storm-mediated lung injury. The SARS-CoV unique domain (SUD) with three macrodomains (N, M, and C), showing the G-quadruplex binding activity, was examined the possible role in SARS pathogenesis in this study. The chemokine profile analysis indicated that SARS-CoV SUD significantly up-regulated the expression of CXCL10, CCL5 and interleukin (IL)-1ß in human lung epithelial cells and in the lung tissues of the mice intratracheally instilled with the recombinant plasmids. Among the SUD subdomains, SUD-MC substantially activated AP-1-mediated CXCL10 expression in vitro. In the wild type mice, SARS-CoV SUD-MC triggered the pulmonary infiltration of macrophages and monocytes, inducing CXCL10-mediated inflammatory responses and severe diffuse alveolar damage symptoms. Moreover, SUD-MC actuated NOD-, LRR- and pyrin domain-containing protein 3 (NLRP3) inflammasome-dependent pulmonary inflammation, as confirmed by the NLRP3 inflammasome inhibitor and the NLRP3-/- mouse model. This study demonstrated that SARS-CoV SUD modulated NLRP3 inflammasome-dependent CXCL10-mediated pulmonary inflammation, providing the potential therapeutic targets for developing the antiviral agents.


Subject(s)
Chemokine CXCL10/metabolism , Inflammasomes/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Severe acute respiratory syndrome-related coronavirus/metabolism , Viral Proteins/metabolism , Animals , Bronchoalveolar Lavage Fluid/chemistry , Bronchoalveolar Lavage Fluid/immunology , Cell Line , Chemokine CXCL10/genetics , Disease Models, Animal , Humans , Lung/metabolism , Lung/pathology , Mice , Mice, Inbred C57BL , Mice, Knockout , Monocytes/immunology , Monocytes/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/deficiency , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Pneumonia/pathology , Pneumonia/virology , Promoter Regions, Genetic , Severe acute respiratory syndrome-related coronavirus/isolation & purification , Severe Acute Respiratory Syndrome/pathology , Severe Acute Respiratory Syndrome/virology , Up-Regulation , Viral Proteins/chemistry , Viral Proteins/genetics
2.
Sci Rep ; 11(1): 24432, 2021 12 24.
Article in English | MEDLINE | ID: covidwho-1585772

ABSTRACT

Despite the initial success of some drugs and vaccines targeting COVID-19, understanding the mechanism underlying SARS-CoV-2 disease pathogenesis remains crucial for the development of further approaches to treatment. Some patients with severe Covid-19 experience a cytokine storm and display evidence of inflammasome activation leading to increased levels of IL-1ß and IL-18; however, other reports have suggested reduced inflammatory responses to Sars-Cov-2. In this study we have examined the effects of the Sars-Cov-2 envelope (E) protein, a virulence factor in coronaviruses, on inflammasome activation and pulmonary inflammation. In cultured macrophages the E protein suppressed inflammasome priming and NLRP3 inflammasome activation. Similarly, in mice transfected with E protein and treated with poly(I:C) to simulate the effects of viral RNA, the E protein, in an NLRP3-dependent fashion, reduced expression of pro-IL-1ß, levels of IL-1ß and IL-18 in broncho-alveolar lavage fluid, and macrophage infiltration in the lung. To simulate the effects of more advanced infection, macrophages were treated with both LPS and poly(I:C). In this setting the E protein increased NLRP3 inflammasome activation in both murine and human macrophages. Thus, the Sars-Cov-2 E protein may initially suppress the host NLRP3 inflammasome response to viral RNA while potentially increasing NLRP3 inflammasome responses in the later stages of infection. Targeting the Sars-Cov-2 E protein especially in the early stages of infection may represent a novel approach to Covid-19 therapy.


Subject(s)
Coronavirus Envelope Proteins/metabolism , Inflammasomes/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , SARS-CoV-2/metabolism , Animals , Bronchoalveolar Lavage Fluid/chemistry , COVID-19/pathology , COVID-19/virology , Coronavirus Envelope Proteins/genetics , Down-Regulation/drug effects , Endoplasmic Reticulum Stress , Humans , Inflammasomes/drug effects , Interleukin-1beta/genetics , Interleukin-1beta/metabolism , Janus Kinases/genetics , Janus Kinases/metabolism , Lipopolysaccharides/pharmacology , Macrophages/cytology , Macrophages/drug effects , Macrophages/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , NLR Family, Pyrin Domain-Containing 3 Protein/deficiency , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Poly I-C/pharmacology , RNA, Viral/metabolism , SARS-CoV-2/drug effects , SARS-CoV-2/isolation & purification
3.
Pathog Dis ; 79(1)2021 01 09.
Article in English | MEDLINE | ID: covidwho-963763

ABSTRACT

A vast proportion of coronavirus disease 2019 (COVID-19) individuals remain asymptomatic and can shed severe acute respiratory syndrome (SARS-CoV) type 2 virus to transmit the infection, which also explains the exponential increase in the number of COVID-19 cases globally. Furthermore, the rate of recovery from clinical COVID-19 in certain pockets of the globe is surprisingly high. Based on published reports and available literature, here, we speculated a few immunovirological mechanisms as to why a vast majority of individuals remain asymptomatic similar to exotic animal (bats and pangolins) reservoirs that remain refractile to disease development despite carrying a huge load of diverse insidious viral species, and whether such evolutionary advantage would unveil therapeutic strategies against COVID-19 infection in humans. Understanding the unique mechanisms that exotic animal species employ to achieve viral control, as well as inflammatory regulation, appears to hold key clues to the development of therapeutic versatility against COVID-19.


Subject(s)
COVID-19/immunology , Cytokine Release Syndrome/immunology , NLR Family, Pyrin Domain-Containing 3 Protein/immunology , Receptors, KIR/immunology , Receptors, NK Cell Lectin-Like/immunology , Zoonoses/immunology , Animals , Animals, Exotic/virology , Asymptomatic Diseases , COVID-19/genetics , COVID-19/transmission , COVID-19/virology , Chiroptera/virology , Cytokine Release Syndrome/genetics , Cytokine Release Syndrome/prevention & control , Cytokine Release Syndrome/virology , Disease Reservoirs , Eutheria/virology , Gene Expression , Host Specificity , Humans , Immune Tolerance , Immunity, Innate , Interferon-beta/deficiency , Interferon-beta/genetics , Interferon-beta/immunology , Killer Cells, Natural/immunology , Killer Cells, Natural/virology , Monocytes/immunology , Monocytes/virology , NLR Family, Pyrin Domain-Containing 3 Protein/deficiency , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Receptors, KIR/deficiency , Receptors, KIR/genetics , Receptors, NK Cell Lectin-Like/deficiency , Receptors, NK Cell Lectin-Like/genetics , SARS-CoV-2/pathogenicity , Tumor Necrosis Factor-alpha/deficiency , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/immunology , Zoonoses/genetics , Zoonoses/transmission , Zoonoses/virology
SELECTION OF CITATIONS
SEARCH DETAIL